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Abstract. We examine the problem of diffusion over a fluctuating barrier in the limit where 
the barrier fluctuations are extremely fast compared with all other timescales in the problem. 
In the white noise limit, decay of probability from the metastable state is exponential with 
a characteristic timescale exhibiting Arrhenius behaviour. For small but finite correlation 
times for the fluctuating part of the potential, the effective barrier increases with the 
correlation time. Implications for liquids above the glass transition are discussed. 

Transport and relaxation properties of a viscous liquid slightly above the glass transition 
appear to be activated, but in many cases are non-exponential in their time dependence 
and non-Arrhenius in their temperature dependence [ 11. Typically, an atom may not 
be able to diffuse or relax unless other atoms or groups of atoms rearrange themselves 
to create a more favourable environment for some such process to take place. Since 
the barrier to diffusion depends on these other atoms, which are subject to thermal 
fluctuations themselves, one needs to understand the problem of barrier crossing when 
the barrier is itself fluctuating due to random thermal noise or other processes. This 
problem is also relevant to other physical situations, such as oxygen binding to 
haemoglobin [2,3]. 

In a previous paper [4], we began a systematic study of the problem of escape over 
a fluctuating barrier. We studied the mean exit times in the cases when the timescale 
T ,  for the barrier fluctuation was very long compared with that for crossing the average 
static barrier, when T,  was small compared with the static barrier crossing time but 
large compared with microscopic timescales in the problem, and when the barrier 
fluctuations were due to a white noise process. We studied the simplest possible model 
in which a single ‘test particle’ diffused over a single fluctuating barrier, which is an 
oversimplification in several respects: T, is almost certainly a (decreasing) function of 
temperature, and collective effects, feedback processes, and self-consistency are 
ignored. The model is nonetheless a reasonable approximation for some physical 
processes, for example when the ‘gate’ atoms have a large (real or effective) mass 
compared with the diffusing atom, or when the barrier arises from collective motions 
of many degrees of freedom. More importantly, the understanding gained from 
studying this simple model should be quite useful for studying more complicated, 
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realistic models and provides a first step in that direction. The model presented here 
is related in spirit to various models currently under study, such as stochastic resonance 
[ 51 and coloured noise activated barrier crossing [6], but investigates a completely 
different phenomenon. 

In this letter we present a more thorough study of a simple model of escape over 
a fluctuating barrier in the white noise limit. In particular, we discuss the time 
dependence of probability decay inside the metastable state, and present an expansion 
in r, of the mean exit time about the white noise result. The white noise limit itself 
displays both exponential and Arrhenius behaviour, which is perhaps not surprising 
in view of the clear-cut separation of timescales in that problem. For small but finite 
r,, we find that the mean exit time increases with r,, which is consistent with the 
results of other cases discussed in [4], and may have interesting implications for 
non-Arrhenius behaviour in glasses. 

We choose to work with a simple model in which the barrier fluctuations are 
Gaussian, Markovian, and stationary, hence an Ornstein-Uhlenbeck process [7]. If 
the correlation time of the fluctuations is r,, the barrier fluctuations are controlled by 
the process t ( r )  governed by the equation 

where q , ( r )  is &correlated white noise, and all times are taken to be dimensionless. 
For convenience, we separate the potential into a static part V ( x )  (which we take to 
be of the Kramers form with a local minimum at x = 0) and a fluctuating part W ( x )  
(see figure 1). Diffusion across the barrier in the high friction limit is governed by the 
Langevin equation 

where &( r )  is governed by (l) ,  q2( t )  is &correlated white noise, and primes denote 
derivatives with respect to x. The factor ensures a sensible white noise limit, 
and the 0 prefactor of the fluctuating term in the potential comes from a very simple 
picture of a ‘gate’ controlled by atoms oscillating in harmonic wells due to random 
thermal noise. While this temperature dependence is actually more general than this 
simple picture suggests, there may well exist situations with more complicated tem- 
perature dependences. We will only consider a f i  amplitude for the fluctuations here, 
because it is both simple and natural, leaving other situations for future work. 

x . 0  

Figure 1. The potential V ( x )  is static, and W ( x )  represents the fluctuating component: 
v,,,,, = v + w m  6. 
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Equations (1) and (2) define our model in the general case; we will now examine 
the situation T ~ +  0. We will first study the properties of the model in the strict white 
noise limit, and then ask what happens when T~ is small but finite. 

The fast variable 6 can be adiabatically eliminated in the white noise limit to yield 
a Fokker-Planck equation for the probability density function p ( x ,  t )  (we will explicitly 
demonstrate this procedure later): 

a 
ax  

a 
at  

V ‘ ( X ) +  T-+ (3) 

We first ask for the behaviour of the mean exit time from the local minimum at x = 0 
to x = 03 for an ensemble of particles. The mean time T ( X )  for a particle to diffuse 
from x to CO is found from the solution of the differential equation [ 8 ] :  

a7 d2 7 

ax  ax2  
-( v’- TW’W”) -+ ~ ( i  +(  w’)*) -= -1 (4) 

where we use natural boundary conditions at -CO and an absorbing barrier at +CO. 

The average exit time from x = 0 is then [4] 

I t  is immediately clear that the effective barrier to escape is lowered from what it 
would be if the fluctuating part were absent. This is because the particle has many 
opportunities to escape from times when the barrier is relatively low; it need not wait 
for a sufficiently large thermal kick to take it over a relatively high barrier, as it would 
if there were no fluctuating part to the potential. While the ‘effective barrier’ at first 
sight appears to be non-Arrhenius, a steepest descent calculation of ( 5 )  at low tem- 
perature yields an Arrhenius temperature dependence of the mean exit time in an 
effective potential given by 

Numerical evaluation of the full integral ( 5 )  confirms this picture [4]. 
The time dependence of escape of probability from the well can be found by 

integrating (3)  numerically. We studied the simple case where 

(7) 

and examined the time dependence of the quantityf( t )  = I?m p ( x ,  t )  dx given the initial 
condition p ( x ,  0) = S ( x ) .  We confined ourselves to study of the regime where tem- 
perature was low ( ~ 0 . 0 5 )  compared with the static barrier height, which was 0.1667, 
a varied between 5 and 10, and D was kept smaller than 0.2. In this way we were 
able to concentrate on the regime of interest, that is, where separation of the exit time 
into a product of a prefactor and an exponential is sensible. We found thatf( t )  - e-‘”‘’ 
to excellent precision for f( t )  < 0.99. Furthermore, we found excellent agreement 
between the (7) computed from this integration of (3)  and the mean exit time computed 
directly from ( 5 ) .  

V (  x )  = ;x2 - 4x3 W ( x )  = D e - a ( x - l ) 2  
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We now have a good understanding of our model in the white noise limit; we 
would like to have further information about its behaviour near but not exactly at this 
limit. We will use the singular perturbation technique of Doering, Hagan and Lever- 
more [ 6 ]  (DHL) .  We begin by writing the full Fokker-Planck equation for arbitrary 
T ~ ,  derived from equations ( 1 )  and (2): 

(8) 
a 

- p ( x ,  6, t )  = [ E - ~ ~ * ( ~ + ~ ~ ) + E - ’ ( J T ~ ~ , W ‘ ( X ) ) + ~ , V ’ ( X ) +  ~ a , I p ( x ,  6, t )  
at  

where E =A. For convenience we shall define the operators Lo = a,((+a,), L ,  = 
f i , $ a , W ‘ ( x ) ,  and L 2 = a , V ‘ ( x ) +  Ta,. Let the initial condition be p ( x ,  5,O) = 
6 ( x ) p o ( ( ) ,  where p o ( t )  = (l /d%) e-e2’2 is the stationary distribution of 6. Define the 
quantity G ( x ,  5) =I,“ p ( x ,  6, t )  dt;  then integrating (8) from t = 0 to t = CO yields the 
equation 

[&-*Lo+ E-ILI f L , ] G ( x ,  6) = - 6 ( x ) p o ( t ) .  

(7) = j-1 J x  dx a x ,  5). 

( 9 )  

Equation (9) is valid when p vanishes sufficiently quickly as t --* CO. The mean time 
for a particle starting at x = 0 to reach infinity is given by 

--P) 

We will always assume a static potential, like that of (7) ,  which approaches -CO as 
x + CO; our results are easily generalisable for other forms of the potential. Finally, 
we use natural boundary conditions at x = ---CO and an absorbing barrier at x = CO; the 
special boundary considerations of DHL do not apply here since the diffusing particle 
is being driven by a white noise process. 

Following DHL, we insert the ansatz 

G ( x ,  5) = Go(x,  5) + EGI(x, 5) + E ~ G ~ ( x ,  5) +. 

LoGn(x, 0 = - L I G n - l ( x ,  5 ) - L G n - , ( x ,  5 ) - 6 n , 2 6 ( ~ ) ~ 0 ( 5 )  

. (10) 

( 1 1 )  
with G , ( x ,  6) = 0 for n < 0. The eigenfunctions of the operator Lo are simply related 
to the Hermite polynomials [9] Hen(6): 

into (9) and collect terms of the same power in E. We therefore have 

Lop, (5) = -npn ( 6 )  P n ( 5 )  = Hen(6 )Po(5 ) .  (12) 
For n = 0, we have G o ( x ,  5 )  = p o ( [ ) r 0 ( x ) ,  with r o ( x )  a function to be determined. 

Substituting this into ( 1 1 1 ,  we find G , ( x ,  5) = p o ( ~ ) r , ( x ) + ~ p , ( ~ ) a , W ’ ( x ) r o ( x ) ,  with 
r l ( x )  also to be determined. These functions are determined by substituting our 
expressions for G o ( x ,  5) and G l ( x ,  6) into (11) with n = 2, noting that the operator Lo 
has a zero eigenvalue and is in general not invertible, and therefore demanding that 
the coefficient of po vanish. This restricts the space of functions of ,$ to that subspace 
on which Lo is invertible, namely that subspace spanned by the ~ ~ ( 6 ) s  for n 3 1 .  For 
more details, see DHL. 

In this way, the following differential equations for the first few r n ( x ) s  are obtained: 

[ d , V ’ ( x ) +  Tax, + T a , W ‘ ( x ) a , W ’ ( x ) ] r o ( x )  = - S ( X )  
[ d , V ’ ( x )  + Tax, + Tax W ’ ( x ) a ,  W ’ ( x ) ] r , ( x )  = 0 

( 1 3 ~ )  

(13b) 
[ a , V ’ ( x )  + Tax, + Tax W ’ ( x ) a ,  W ’ ( x ) ] r 2 ( x )  

= - [T2a,  W ’ ( x ) a ,  W ’ ( x ) a , W ( x ) d ,  W’(X) 

+ T ( d x  W ’ ( x ) ) ( d x  V ’ ( X )  + Td, ) (ax W’(X))l  r d x ) .  (13c) 
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The right-hand side of (13c) is simply - [Li (L’ , ’+L2)L’ , ] r0 ,  where Li is L , / t ;  Li2+L2 
is the white noise operator. The function r 2 ( x )  is related to G2 by the equation 

The solution to (13a) which satisfies our boundary conditions is 

x s o  
T 

- 
T m  low dx’ J1 + w , ( x , ) z  
* e-B(x)’T 

elL(x’)l T 

x 2 0. - dx’m 
ro(x)  = 

There is no non-vanishing solution to (136) which satisfies the boundary conditions. 
The solution to (13c) is 

r 2 ( x )  = T d x ’ g ( x ,  x ’ )  x [ T d ,  W ’ ( x ’ ) d ,  W ‘ ( X ‘ ) ~ ,  W ’ ( X ‘ ) ~ ,  W ’ ( X ’ )  I: 
+ ( a : W ( x ’ ) ) ( a ,  V ’ ( x ’ ) +  T a x ,  ) ( d L W ( x ’ ) ) ] r , , ( x ’ )  (16) 

where g ( x ,  x ’ )  is the Green function for the white noise Fokker-Planck operator (i.e. 
g ( x ,  x ’ )  is just r o ( x )  given by (15 )  with the zero in the lower limit of the first integral 
replaced with x’ ,  and where the first integral in (15) is valid for x x ’  and the second 
for x 3 x ’ ) .  

r 2 ( x ) =  6 ( x ) +  V ( x ) r o ( x ) +  V ’ ( x ) r b ( x ) +  Tr ,”(x)  

Equation (16) can be simplified to 

X 

dx’ g ( x ,  x ’ )  x d ,  [ V ’ ( X ’ )  W ” ( X ’ )  - W ’ ( X ‘ )  V ” ( X ’ )  
- I_* 
+ T d ,  W ’ ( x ’ ) +  T W ” ( x ’ ) d , ] d ,  W ( x ’ ) r o ( x ’ ) .  (17) 

Since JTm p l ( z )  d z  = 0, i # 0, only the coefficients of po  in the G,s contribute to the 
mean exit time. With (15) we recover (3)  for the mean exit time in the white noise limit. 

The lowest order correction T~ is equal to T~ lZm d x  r z ( x ) .  We have numerically 
integrated (17) for temperatures ranging from 0.02 to 0.05 (or from about one eighth 
to one third the static average barrier height), and using V ( x )  and W ( x )  as given in 
(7 ) ,  with D = 1 and (Y ranging from 3 to 10. In all cases studied, the lowest order 
correction T ~ / T ~  to the white noise limit was positive, and obeyed an  Arrhenius tem- 
perature dependence. Figure 2 shows the first-order correction term T*/ T ,  against 
temperature for the case a = 10. 

Hence, we find that the mean exit time increases as T ,  increases. This is consistent 
with results found in [4] for other regimes; in all cases studied thus far, the mean exit 
time has been a monotonically increasing function of 7,. This result is of particular 
interest for the study of glassy liquids, since any reasonable model for a gating process, 
whether the gate atoms are in a harmonic potential or are activated from one local 
minimum to another, has T ,  monotonically decreasing as temperature increases. There- 
fore, our model implies an effective barrier to diffusion or flow which decreases as 
temperature increases, in qualitative agreement with observations on fragile liquids 
[lo]. The simplicity of the model studied here precludes more than a qualitative 
comparison at this stage. 
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Figure 2. Plot of the first order correction r 2 / r ,  against temperature for the case D = 1, 
(1 = 10. 

Work in progress includes a study of the time and temperature dependence of the 
solution of the full Fokker-Planck equation (8) for the full range of possible values 
of 7,. Feedback effects, in which T, itself is affected by crossing events, will also be 
examined. These results will be reported in a future publication. 

One of us (DLS) wishes to acknowledge a helpful discussion with B Stein. 
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